kvrabhishek

by Rani Clement king

Submission date: 22-Jul-2022 03:50AM (UTC-0500)
Submission ID: 1867201200

File name: KVR_Abhishek_Paper.docx (850.58K)
Word count: 1721

Character count: 9239

Implementation and Analysis of Double Linked List Sorting

Abhishek S
UG Student,
Department of Al and ML,
RNSIT, Bengaluru, India
abhishekiyer. 2002 @ gmail .com

Dr.Rama Satish K V
Associate Professor,
Department of Al and ML,
RNSIT, Bengaluru, India

ramasatishkv @ gmail com

Abstract— This paper works on sorting the given set of elements effectively in both Sort-ascending and Sort-descending order.
There are numerous methods/algorithms for sorting a given group of random integers wherein each of these algorithms take unique
time to execute the sorting operation. Basic idea of time complexity was highly considered during the design of this algorithm and

we make use of doubly linked list in achieving this.

Keywords — Doubly linked list, Sorting, Array.

L. INTRODUCTION

Sorting can be defined as the process of systematic
arrangement of elements.

Analysis of any algorithm is done by two parameters:
Space complexity and time complexity. Space complexity

than the pivot are shifted before it, while all factors
higher than it are shifted after it. The time it takes to
accomplish this procedure is linear. The lesser and
increased sub arrays are then sorted recursively.
This results in O(n log n) time comple xity.

N .
is the memory space expected for the general execution of % Bubble Sort:
the program and time complexity can be defined as the It is the most basic method of sorting an array, but it
total time taken dcpcnd‘mg on various fd_u()ls such as is also the slowest. The principal thought behind this
processor speed, compiler used, ete. 1 the current kind is to thoroughly analyze two nearby values, as
advancements are kept in mind, space complexity can be ’ roughly anafy aroy vajues, as
ignored and hence time complexity becomes the only well as to switch them in the event that they are in
deciding parameter. some unacceptable succession. The algorithm has
O(n log n). O(n), O(n’) are the general time complexities E]"(:;l)] PCil:El:lll(-:jli]n»lSzl-%;gﬂ];;iilzogg;[m;:‘yi“l;‘,l:le-l: ::Z
which are majorly seen among the different sorting o g 15 afready sorted. R & ° e
algorithms after considering their best, average and worst very commencement of the array. If the first element
Cases. is greater than the second, it compares the two and
. swaps them. This is done recursively for every pair
We have made use of doubly linked list which contains ‘p S o) ’ [_}‘)
two links associated with each of the node, that is the left of adjoining factors up to the array's end. Bubble sort
link (llink) and the right link (rlink). If the sorting is done has time u)mple)slt)‘ of O (n) for its ‘lvemge ‘m‘d
in ascending order, we can easily convert the same into worst cases, so it is rarely used to sort gigantic
descending order by swapping the front and last pointers. arrays.
1. LITERATURESURVEY % Merge Sort:
X .) . The array is divided into n subarrays, each with one
Some of the algorithms for sorting are: . . . " X
= = component, using this sorting algorithm (an array of
& Insertion Sort: 1 cm‘np()ncnt is regarded to be S()‘rled). It then
combines subarrays one by one to build new sorted
This method works well with tiny and almost sorted subarrays until only one is left. This collection has
values and is frequently used as part of more now been sorted. Merge sort has acomplexity of
complicated algorithms. This algorithm pulls factors O (n log n).
from the array one by one and inserts them into a
new sorted list using ther prescribed function. & Radix sort:
Insertion sort has O(n) time complexity. The given set of elements are sorted one after the
other based on its least and most significant bit. This
*, s
% Selection Sort: sorting technique is also called as bucket sort as 10
This sort has O(n?) complexity, it is inefficient on buckets with values 0 to 9 are used. This algorithm is
large arrays and frequently works worse than insertion not effective for different range of elements.
sort algorithm. In favourable cases, the selection type L. IMPLEMENTATION CODE/ALGORITHM

has an advantage over more sophisticated algorithms.
This method distinguishes the smallest factor, trades it
with the worth in the exhibit's underlying number, and
rehashes until the end of the rundown. It requires n
swaps and is generally used in situations where
swapping is prohibitively expensive.

¢ Quick Sort:

It is basically a divide-and-conquer strategy. An
element known as a pivot is chosen when an
array is partitioned into nodes. All factors lower

Program is implemented in the given link:
[=] iz [=]
L]
i -
=)=

https://onlinegdb.com/-fVxngAtF

Cade snippet:
1. if(first==NULL)

2 {

3 first=new;

4, last=first;

5. }

6 else if(first->rlink==NULL)

7 {

8 if(new->data <= first-»data)

9. { new->rlink=first;

10. first-»>1link=new;

11. first=new;

12. 1

13. else

14, { first->rlink=new;

15. new->1link=Ffirst;

16. last=new;

17. 1

18. }

19. else

20. {

21. temp=first;

22. while(temp!=NULL)

23. {

24, if(new->data <= temp->data)
25. { if(temp==First)

26. {

27. new->rlink=temp;

28. temp->1link=new;

20, first=new;

30. return;

31. }

32. else

33. {

34, new-r>rlink=temp;

35. temp->1link->rlink=new;
36. new-3>1link=temp;

37. temp->1link=new;

38. return;

39. }

40. 1

41. else if(temp->rlink==NULL)
42. {

43, temp->rlink=new;

44, new->1link=temp;

45. return;

46. 1

47, else if(new->data >= temp->data)
48. {

49, if(new-»data <= temp->rlink->data)
50. {

51. new->rlink=temp->rlink;
52. temp->rlink=new;
53. temp->rlink->11link=new;
54. new->11link=temp;
55. return;

56. }

57. else if(new-»data > temp->rlink->data)
58. {

59. temp=temp->rlink;
60. }

61. 1

62. 1

63. }

Working of proposed method.:

The elements to be sorted are initially stored in an array.
Later, each element one after the other are inserted in a
doubly linked list. The initial element acts as the first
node when insertion operation takes place for the first
array element. Later, successive elements of array are
considered one after the other and insertion of each of the
element takes place in the doubly linked list.

Comparison of element takes place and then the insertion
of the same happens when its correct place is identified.
This algorithm even works when identical inputs are
provided. It is also noted when the null value is
encountered and the first and last pointers are updated
respectively.

Analysis of proposed method:

This algorithm has O(n) time complexity and is very
flexible with huge input set of elements.
The elements are entered in an array as shown below:

0 1 2 3 4
a0 | 20 | 10 | 50 [30 |

Figure I- Initial Array Elements

Step 1- The first element of array becomes the first
node:

p<— 40 —> ¢
Figure 2- Formation of initial node

Step 2- The second element of array is then inserted:

¢ < 20 . 40 — ¢

Figure 3- Doubly linked list after insertion

Step 3- Array element in 2" index number will be
inserted:

— >

D

$ < 10 20 40 — ¢

Figure 4- Doubly linked list after insertion

Step 4- Array element in the 3" index number will be
inserted:

1 — e
¢ < 10 220 240 250 —> ¢
Figure 5- Doubly linked list after insertion

Step 5- The final array element is considered:

,%
<

Figure 6- Final sorted output

—> = —=
¢<—10620<_30 40(_50—>-¢

IV. RESULTS DISCUSSION
The proposed method has been examined for the arrays of
following variety of factors 5000, 10000, 20000 and
30000. The evaluation with different sorting algorithms is
as follows.

1. The examination between the proposed technique and
Bubble sort comprising of various number of
components

TABLE I: BUBBLE SORT VS. PROPOSED METHOD

In the above graph, blue line depicts the proposed method and
theorange line depicts the selection sort.

3. The examination between the proposed technique and
Merge sort comprising of various number of
components.

TABLE III- MERGE SORT VS. PROPOSED ALGORITHM

of values | Bubble Sort | Proposed
method
5000 0.54945 0.060513
10000 1.64835 0.193082
20000 3.29670 0.860823
30000 4.94505 2.922519

Graph for the above comparison is as demonstrated-

Bubble Sort =@ Proposed Algorithm

5000 10000 20000 30000
Mumber of elernents

Figure 7- Graph between proposed method and bubble sort,

In the Figure 7, blue line i.e. the proposed method consumes
less time compared to existing bubble sort i.e.
orange line.

2. The examination between the proposed technique and
selection sort comprising of various number of

i# of values | Merge Sort | Proposed
method
5000 0.54945 0.060513
10000 1.64835 0.193082
20000 2.74725 0.860823
30000 3.84615 2.922519
Graph for the above comparison is as demonstrated-
Merge Sort —8— Proposed Algorithm

s
i e
E 1: ///
T d

0s __—

0 —
5000 10000 20000 30000
Mumber of elements.

Figure 9- Graph between proposed method and merge sort.

In the above graph, blue line depicts the proposed
method and theorange line depicts the merge-sort.

4.The examination between the proposed technique
and Insertion sort comprising of various number of
components.

TABLE IV-INSERTION SORT VS. PROPOSED ALGORITHM

componen ts.

TABLE II: SELECTION SORT VS, PROPOSED METHOD

of values Selection Proposed

Sort method
5000 0.54945 0.060513
10000 1.74635 0.193082
20000 3.09570 0.860823
30000 4.94505 2.922519

Graph for the above comparison is as demonstrated-

Time in seconds

5000

E—

Selection Sort

10000

Number of elements

-8 Proposed Algorithm

20000 30000

Figure 8- Graph between proposed method and selection sort.

of values | Insertion sort Proposed
method
5000 0.54945 0.060513
10000 1.09890 0.193082
20000 2.74725 0.860823
30000 4.39560 2.922519

Graph for the above comparison is as demonstrated-

Insertion Sort —#— Proposed Algorithm
5
45
4
518
i, A
25 '
£ ”
[~
F 15
1 v
05 - -
o —
5000 10000 10000 30000
Number of elements

Figure 10- Graph berween proposed method and insertion sort

In the Figure 10, proposed algorithm (blue line) consumes
less time compared to insert-sort method (orange line).

5. The examination between the proposed technique
and Array-Indexed sort comprising of various
number of components.

TABLE V- ARRAY-INDEXED SORT VS, PROPOSED METHOD

of values Array- Proposed
Indexed sort method
5000 2.74725 0.060513
10000 4.94505 0.193082
20000 9.34066 0.860823
30000 15.38462 2.922519

Graph for the above comparison is as demonstrated-

Array IndesedSort @8- Proposed Algorithm

Time in seconds
o= B8 RN ERE

—

o - — -
5000 10000 20000 30000
Number of slemants

Figure 11- Graph between proposed method and array indexed sort.

In the above graph, blue line depicts the proposed
method and theorange line depicts the array-indexed sort.

REFERENCES

[1] H. C Thomas, E. L Charles, L. R Ronald, and S.
Clitlord, "Introduction to Algorithms", Second
Edition MIT Press and 609 McGraw- Hill, ISBN
0-262-03293-7. Section 1.1 Algorithms, ppS5,
2001

K. Donald, "The Art of Computer Programming
Sorting and Searching", Third Edition. Addison-
Wesley, ISBN 0-201- 89685- O.Section 52.2
Sorting by Exchanging, pp 106-110, 1997.

['J

(3] L. Seymour, "Theory and Problems of Data
Structures”, Schaum's Qutline Series:
International Edition, McGraw-Hill. ISBN (0-07-
099130-8. Section 9.4: Quick Sort. pp. 324-325,
1986.

[4

2011.

Indexed Sorting Algorithm for natural numbers”,

IEEE, pp. 606- 609,2011.

Insertion_sort https:/fen.wikipedia.org/wiki/Insertion_S

7 K-‘literge_S()rt, https:/fen.wikipedia."org/wiki/Merge_sort

[8] Bubble_Sort https://fen.wikipedia.org/wiki/Bubble_sort

9] Rama Satish K V, Manoj M Kaushik, “A Holistic
Method of Linked List sorting”, Proceedings of
NCCT, RNSIT, Bengaluru, 2021.

[5

[6

ACKNOWELDEGMENT

This research was supported by RNS Institute of
Technology, Bangalore, India. We are so grateful to Dr.
M. K. Venkatesha, Principal at RNS Institute of
Technology for his comments on an earlier version of
the manuscript, although any errors are our ownand should
not reflect negatively on these illustrious individuals'
reputations.

We like to thank Dr. Rama Satish K. V from the bottom of
our hearts for assistance with Application Development,
and for comments that greatly improved the manuscript.

We also want to express our gratitude to Dr. Harsha for
sharing his knowledge with us during the course of this
research, and we thank our family members for their
immense support.

We thank our friends from various departments who
provided insight and expertise that greatly assisted the
research. We are also appreciative for the feedback we
have received on this research topic from our readers.

AUTHORS PROFILE:

Abhishek S is currently pursuing Bachelor of
Engineering (B.E.) in Antificial Intelligence
and Machine Learning (AI-ML) from RNSIT.
His area of interest includes Data Structures
and algorithms, Artificial Intelligence and
Machine Learning.

Dr. Rama Satish is an associate professor at
Department of AIML, RNSIT. He holds
M .Tech and Ph.D. from VTU. His Area of
interest includes Web Services, Cloud
Computing, Artificial Intelligence, Machine
Leamning, Data Science and Big Data
Processing.

Insertion sort, htp:/fen.wikipedia.org/wikillnsertion_sort,

kvrabhishek

ORIGINALITY REPORT

11. 4. 8y O

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

Shruti Rishabh Pandey. "A HEURISTIC
APPROACH OF SORTING USING LINKED LIST",
2018 Second International Conference on
Computing Methodologies and
Communication (ICCMC), 2018

Publication

0%

www.irjmets.com

Internet Source

2%

Rama Satish K'V. "Deep Clustering Assisted
Authentication and Data Sharing Approach in
Mapreduce Enabled Environment", 2021
International Conference on Circuits, Controls
and Communications (CCUBE), 2021

Publication

T

www.skymem.com

Internet Source

(K

o

www.cscjournals.org

Internet Source

<1%

Exclude quotes On Exclude matches Off

Exclude bibliography On

